Aliases: C32⋊1M4(2), C4.(C32⋊C4), (C3×C12).3C4, C32⋊2C8⋊3C2, C3⋊Dic3.8C22, (C2×C3⋊S3).6C4, (C4×C3⋊S3).7C2, (C3×C6).2(C2×C4), C2.4(C2×C32⋊C4), SmallGroup(144,131)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C32⋊M4(2) |
Generators and relations for C32⋊M4(2)
G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=ab-1, dad=a-1, cbc-1=a-1b-1, dbd=b-1, dcd=c5 >
Character table of C32⋊M4(2)
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 18 | 4 | 4 | 2 | 9 | 9 | 4 | 4 | 18 | 18 | 18 | 18 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | -2 | 0 | 2 | 2 | 0 | -2i | 2i | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ10 | 2 | -2 | 0 | 2 | 2 | 0 | 2i | -2i | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ11 | 4 | 4 | 0 | -2 | 1 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ12 | 4 | 4 | 0 | 1 | -2 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | orthogonal lifted from C32⋊C4 |
ρ13 | 4 | 4 | 0 | 1 | -2 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ14 | 4 | 4 | 0 | -2 | 1 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | -2 | orthogonal lifted from C32⋊C4 |
ρ15 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | complex faithful |
ρ17 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | complex faithful |
ρ18 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | complex faithful |
(1 11 22)(2 12 23)(3 24 13)(4 17 14)(5 15 18)(6 16 19)(7 20 9)(8 21 10)
(2 23 12)(4 14 17)(6 19 16)(8 10 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(9 20)(10 17)(11 22)(12 19)(13 24)(14 21)(15 18)(16 23)
G:=sub<Sym(24)| (1,11,22)(2,12,23)(3,24,13)(4,17,14)(5,15,18)(6,16,19)(7,20,9)(8,21,10), (2,23,12)(4,14,17)(6,19,16)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23)>;
G:=Group( (1,11,22)(2,12,23)(3,24,13)(4,17,14)(5,15,18)(6,16,19)(7,20,9)(8,21,10), (2,23,12)(4,14,17)(6,19,16)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23) );
G=PermutationGroup([[(1,11,22),(2,12,23),(3,24,13),(4,17,14),(5,15,18),(6,16,19),(7,20,9),(8,21,10)], [(2,23,12),(4,14,17),(6,19,16),(8,10,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(9,20),(10,17),(11,22),(12,19),(13,24),(14,21),(15,18),(16,23)]])
G:=TransitiveGroup(24,243);
C32⋊M4(2) is a maximal subgroup of
C4.S3≀C2 (C3×C12).D4 (C3×C24).C4 C8.(C32⋊C4) C32⋊6C4≀C2 C32⋊7C4≀C2 C32⋊D8⋊C2 C32⋊Q16⋊C2 C3⋊S3⋊M4(2) C62.(C2×C4) C12⋊S3.C4 C33⋊2M4(2) C33⋊4M4(2)
C32⋊M4(2) is a maximal quotient of
(C3×C12)⋊4C8 C32⋊2C8⋊C4 C62.6(C2×C4) He3⋊1M4(2) C33⋊2M4(2) C33⋊4M4(2)
Matrix representation of C32⋊M4(2) ►in GL4(𝔽5) generated by
1 | 4 | 3 | 3 |
2 | 2 | 1 | 2 |
4 | 1 | 4 | 1 |
4 | 2 | 1 | 1 |
3 | 3 | 1 | 0 |
1 | 1 | 4 | 4 |
2 | 3 | 2 | 0 |
0 | 1 | 1 | 0 |
3 | 2 | 4 | 3 |
2 | 4 | 4 | 2 |
1 | 0 | 4 | 2 |
1 | 4 | 0 | 4 |
1 | 3 | 2 | 4 |
2 | 2 | 4 | 2 |
4 | 1 | 0 | 1 |
4 | 1 | 4 | 2 |
G:=sub<GL(4,GF(5))| [1,2,4,4,4,2,1,2,3,1,4,1,3,2,1,1],[3,1,2,0,3,1,3,1,1,4,2,1,0,4,0,0],[3,2,1,1,2,4,0,4,4,4,4,0,3,2,2,4],[1,2,4,4,3,2,1,1,2,4,0,4,4,2,1,2] >;
C32⋊M4(2) in GAP, Magma, Sage, TeX
C_3^2\rtimes M_4(2)
% in TeX
G:=Group("C3^2:M4(2)");
// GroupNames label
G:=SmallGroup(144,131);
// by ID
G=gap.SmallGroup(144,131);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,121,55,50,3364,256,4613,881]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d=a^-1,c*b*c^-1=a^-1*b^-1,d*b*d=b^-1,d*c*d=c^5>;
// generators/relations
Export
Subgroup lattice of C32⋊M4(2) in TeX
Character table of C32⋊M4(2) in TeX